

Integration of Power Data Capture in Slurm

Supporting changes to slurm tables, utilities and accounting database.

In order to support any of the implementations described below, changes were first necessary to relevant internal structures, utilities, and the Mysql Database.

Most notably ‘consumed_power’ and ‘cpu_cycles’values were added to ‘jobaccntinfo’ to enable storage for the relative calculated results, persistence of data for the life of the jobs, and serve as sources for the utilities ‘sacct’ and ‘sstat’ to draw upon. The common aggregation code sets and RPCs were updated, and the utilities themselves were updated to display the new data. The Mysql DB step-table was updated to house the new values and queries adjusted to store them upon job terminations.

Initial Implementation: January 2010
Data Source: Compute node Baseboard Management Components.

Implementation: Remote access to all job’s nodes from Control Node via cluster event and power managers to pull the data encapsulating the timecframe of the job, use a job-completion script to compute the aggregate power consumption and utilize slurm’s accounting db mgr, sacctmgr, to update at the job level.
advantages: out-of-band BMC access prevents adding ‘noise’ to the compute nodes and
degrading compute node performance.

disadvantages: complex implementation involving multiple database types processing,

potential timing issues with the data acquisition, required processing outside of the slurm control node code to update the slurm D.B., and potential problems updating the D.B. itself via sacctmgr.

Current Implementation: October 2010 -
Data Source: Compute node Baseboard Management Components.

Implementation: Remote access to the step’s nodes from Compute Nodes with a step-level thread that periodically accesses the node’s BMC, apportions the power to each step/task/process, and makes available to active interrogation via the ‘sstat’ utility and updates slurm accounting d.b. for job-completion retrieval of the step data.

Plugin-style slurm.conf options have been added .

slurm.conf option: (default)

PowerCaptureType=powercapture/none

For whatever reason, attempt no power capture operations of any kind.

In this case, ‘consumed_power’values remain at 0.

slurm.conf option:

PowerCaptureType=powercapture/ipmi

This current ipmi method utilizes the Open Intelligent Platform Management Interface
(IPMI) to access the BMC periodically on sample intervals to snapshot the current power
usage at the compute node .

This was achieved by pulling down Bull's version of 'ipmitool', stripping the tool
to only the
code necessary to read the power sensor, and repackaging it as the 'getwatts' application
under /etc/slurm/.

Linux Gather Plugin Modifications

In order to reduce time to proof of concept and evaluate slurm performance and issues the
legacy
‘jobacct_linux_gather’ plugin was adopted and modified instead of creating an
entirely new plugin. Conceivably capturing power data is actually something to be
performed in all gather plugins anyway. But perhaps an entirely new plugin (essentially a
copy of this modified linux plugin) should be developed for production.

In any cae this plugin was modified as follows:

A New Thread

Instantiated a separate thread '_issue_ipmi' in the 'jobacct_gather_p_startpoll' routine at the
point that '_watch_tasks' cecomes threaded and the file-scoped 'monitor_ipmi' variable
is set to BMC_IPMI' for use by the gather operation.

 The '_issue_ipmi' routine issues a

 ipmi_ret=system("/etc/slurm/getwatts 1 1 "

">/etc/slurm/watts.dat")

on the polling intervals specified at the same frequency 'xx' of the gather

plugin as configured by 'JobAcctGatherFrequency=xx' in slurm.conf.

The 'getwatts' application will thus retrieve the current power setting from the BMC and
'printf' the value. The redirection in the system call above places this value in

/etc/slurm/watts.dat' for interrogation.

(It is not suggested by this that we advocate piggybacking threads in this manner, particulary
on systems where more than one step can be executed at a time on compute nodes. It is just
noted here for
reference until a new design is fleshed out and threading is moved (see
below in Potential Modifications to the current ipmi Implementation)).

Modified legacy '_watch_tasks' thread in ‘_get_process_data’
 New code in the '_get_process_data' routine of the '_watch_tasks' thread accesses this file in
addition to the legacy /proc/data file accesses for the task(s) processes.

Power Consumption Calculation

Since this new data is not in fact a process-level data item from the /proc files, special

 attention need be paid to achieve a step-level power consumption. Towards that
end a new

 total cputime consumption per sample interval is calculated over the legacy
task/child_process loops that accumulate data for the step that is represented by this
instantiation of the ‘_watch_ task’ thread. At each task break a power consumption is
calculated per task based on the cputime consumed by each tasks’ processes during the
coincident sample period. The power contribution from each task is apportioned based on
each tasks’ cputime in this sample period vs. the total time for the step in this sample period.
Notably to achieve this, a second pass thru the task/process lists is now necessary since the
total cputime for the step in a sample period must be derived first, as computed in the legacy
pass. The step power consumption for this running value is aggregated as other fields are in
:jobacct_common:jobacct_common_aggregate.

Quiescent Watts Level

 The power consumption calculation also must take into account the quesicient power
that the node consumes when there are no tasks running. A measurement during the ipmi
thread
initialization prior to any step initiations will attempt to store a ‘base’watts value
accessible by the gather operations. Note .. it is possible of course to get an inaccurate base
value here. In fact the gather operations will update the value if they detect any readings
less than this value. The hope is that at some point the base-watts value will settle to a
meaningful number. The alternative is to simply use the power reading as read off the BMC.
But this in itelf heavily skews the results achieved per step. This issue resolves when the
capability arrives that allows reading of discrete power values at the cpu/core level.

Potential Modifications to the current ipmi Implementation

As stated, the ipmi thread is currently started when the jobacct-gather thread is started. This
means of course that, for a multi-step node, we have too many ipmi threads, each one
contributing its own ‘noise’ to the compute node.

The most imperative modification is to move the start of this thread away from the gather
operations themselves up the slurmd initialization procedures so that there is only one of
these threads per compute node.

An area in ‘slurmd:main’ has been earmarked for this for immediate experimentation. Once
the ipmi thread code is moved away from the gather operations however, file-scope is lost to
the gather plugins themselves. Since the power data is currently retrieved externally from
the ‘/etrc/slurm/watts.dat’ this does not present an immediate problem for the current gather
operation. However the important Quiescent Watts Level value (‘base_watts’ in the code)
would no longer be immediately available and must be accounted for. One simplesolution is
to add it to the ‘watts.dat’ file and let ‘gather’ processing read it out as well as the current
power sensor.

Another is to implement IPC operations in the gather plugins to retrieve power-centric data
from the new ipmi thread. In this case, not only the ‘base-watts’ value but also the actual
power-sensor reading would reside in the ‘ipmi’ thread for retrieval via IPC. However,
introducing IPC operations into the gather threads would be an entirely new capability and
must be considered in the overall slurm architecture. Compute node ‘noise’ must be kept to a
minimum but in fact this may have no operational impact other than delaying gather
operations completion a bit, if they can be performed on a non-blocking level.

Getwatts integration into slurm plugins

However the power data is stored, file or memory, it is already planned to restructure the
relevant pieces of the ‘getwatts’ application into new slurm plugins and a new ipmi plugin
thread
to replace ‘piggybacking’ the thread off of the gather thread. Not only would this
approach be more consistent with current slurm architecture, it would obviate the need to
deploy the ‘getwatts’ app on compute nodes.
 Compute node Baseboard Management Components:
advantages: “real”power data at the step-level.. provides real-time interrogation of consumption via ‘sstat’ utility and, potentially,
‘scontrol, ‘sview, ‘sreport, etc. More consistent with slurm architecture.
disadvantages: adds ‘noise’ to the compute node in addition to that the gather threads already incur. The ‘kipmi0’driver utilized by ‘getwatts’ can in itself add system overhead (currently under study). Requires deployment of ‘getwatts’ to each compute node.
status: currently considered prototype to help build common Slurm infrastructure, promote architecture input, and reduce bugs in the production product.

slurm.conf option:

PowerCaptureType=powercapture/debug

This would not normally be used at the customer level, unless it is used to investigate customer problems in production.

Currently, with regards to the above BMC interrogation procedure it allows the full exercise of the slurm infrastructure for ipmi operations with the exception that ‘getwatts’ generates a random power value (in a reasonable range) for use on non-BMC-enabled platforms without actually issuing ipmi operations.

Data Source: Task Cycles

slurm.conf option: (also fallback for ipmi)

PowerCaptureType=powercapture/cycles

As a less invasive configured alternative to pulling data from a BMC OR in the case where there is simply no BMC OR attempted IPMI operations fail when BMC is selected, there is the option to derive power from the cpu cycles used by tasks.
There is an empirical direct correlation between frequency and power consumption.
Therefore the intent here is to relate power consumption to the (instantaneous_Power) = (frequency * voltage * voltage * capacitance) formula, focusing on the frequency aspect to attach a relative merit to the amount of cputime at various frequncies that tasks may operate at. Since Frequency = cycles/second, ostensibly obtaining a process’cycles should suffice as a relative reproducible merit for the task.

Cgroups Cycles Statistic

At one time it was suggested that cgroups statistics would provides a true cycles value at the process level. The cgroups plugin was enhanced to process this data but it later developed that the ‘cycles’ statistic was simply a variant of cputime. Since it was still desired to use ‘cycles’ as part of a power calculation an alternative method was developed for use until that issue is resolved for the cgroups plugin and in fact for the forseeable future for the other gather plugins.

Cycles via Weighted Frequency Averaging
An alternative method was implemented wherein a running value of (cputime_per_sample) * (last known_cpu_frequency) is accumulated in the task accounting tables at each gather operation sample. Essentially this represents an estmated cycles accumulation, albeit potentially less accurate than a true ’cycles’would be due to inter-sample frequency drift. This latter may not be a real issue in practice for various reasons, but needs be noted.
Of special note is the acquistion of last known_cpu_frequency as this involves a new source access by the gather plugin. First, data acquisition from ‘/proc/stats’was enhanced to also pick up the last cpu the targetted task/process operated on. To get the last frequency enabled on this particular cpu, if frequency scaling is enabled on the compute node, the /’sys’ driver interface frequency for that cpu is read out. If frequency scaling is not enabled, the frequency is derived from /proc/cpuinfo’(and, in fact is an invariant frequency).

Power Consumption Calculation
Relating back to the (instantaneous_Power)=(frequency*voltage*voltage*capacitance) formula, for our purposes this has become sampled_Power=sampled_frequency_average * K, wherein ‘K’is a platform-dependent empricially derived constant. This is a ripe topic for discussion and interpretation. Currently it is derived from the values that were retrieved via ipmi-bmc returns on a test cluster. Hoeever in one sense it is not important. It could simply be ‘1’and the derived cycles become the power estimate, as long as the values are relative and repeatable to tasks of specific characteristics operating at discreet frequencies.

In any case an accumulation of sampled_Power * (sampled_cputime) is aggregated and available for dynmaic interrogation via ‘sstat’ etc . , and store in the accounting db if available.

advantages: less noise than bmc access .. available on non-bmc platforms .. provides real-time interrogation of consumption via ‘sstat’ utility and, potentially,
‘scontrol, ‘sview, ‘sreport, etc. Provides a relative merit of consumption for tasks that chose to operate at various frequencies.
disadvantages: Weighted Frequency Averaging only as accurate as the sample interval permits as the frequency could potentially drift around between samples. The ‘power’ reading in this case is a derived relative merit and may not be intrinsically accurate.
status: currently operational as an alternative to BMC accesses in linux_gather plugin. Presumably the cgroups plugin will use the more accurate cgroups statistic if it becomes available.

Future Implementations:
Data Source:
Cpu/Core Data Direct:

Proposed Implementation: As new technology introduces power sensors at the socket level and drivers to access them code can be introduced in the gather plugins to directly read out the data .

slurm.conf option:

PowerCaptureType=powercapture/cpu

Utilizing the infrastrucure implemented by the previous designs it would be a relatively trivial effort to utilize this data. In fact, depending on where the drivers place the power information, it may be only necessary to add capture from ‘/proc/stat’ as is currently done by the gather legacy code or the /sys/.. interface, as is currently done by the weighted-cycles code in prototype. Presumably the issues with accuracy, quiescent power level , power-apportionment, ipmi theading, gather IPC, etc. evaporate.

Indeed once this technology is available and stable, this would become the new default method where the platforms support it.
advantages:eliminates defenciencies of previous implementations.
disadvantages: perhaps none depending on driver implemenation.
status: waiting for deployment. for implemenation and testing.
Data Source:
??:

Proposed Implementation: It is conceivable that other IT enterprises may want to use their own implementations of power gathering. Utilizing the plugin model in initial design should allow development of new plugins to allow custom implementaions.

slurm.conf option:

PowerCaptureType=powercapture/tbd

d.rusak
bull hn

